
1 Rayleigh-Benard Convection

Chandrasekhar1 has carefully studied linear stability of Rayleigh-Benard convection using the

Boussinesq approximation, given in terms of the Rayleigh (Ra) and Prandtl (Pr) numbers as

∂u

∂t
+ u · ∇u = −∇p+

1

Pr
∇2

u−RaPrT,
∂T

∂t
+ u · ∇T = ∇2T,

along with continuity, ∇·u=0. Above a certain critical Rayleigh number Rac, the conduction due to

adverse temperature gradient becomes linearly unstable to small perturbations and convection rolls

develop (Fig. 1 top). The table below shows predictions of Rac at the most unstable wavenumber

kc for Ω = [0 : 2π/kc] × [0 : 1] having periodic conditions in x. Dirichlet conditions T = 1 − y are

specified for temperature on the horizontal boundaries, and three different conditions are considered

for velocity: both walls (Dirichlet-Dirichlet), both stress-free (Neumann-Neumann) and a mix

(Dirichlet-Neumann).

Critical Rayleigh number for 3 types of boundaries

BC Ra12 Ra23 Rac
4 kc

4 Ra1 Ra2 Ra3

D–D 1707.75 1707.74 1707.76 3.117 1760 1740 1725

D–N 1100.71 1100.64 1100.65 2.682 1144 1122 1111

N–N 657.639 657.566 657.511 2.2214 690 680 670

According to dynamical systems theory, the saturation amplitude (U) and kinetic energy (Ēk)

grow, respectively, as
√
ǫ and ǫ, for ǫ := (Ra−Rac)/Rac ≪ 1. Thus Rac can be determined from a

linear fit of (volume-averaged steady state) Ēk versus Ra for two or more values of Ra as shown in

Fig. 1 (left). In the table above, the estimates Ra12 and Ra23 are determined from solution pairs

at (Ra1, Ra2) and (Ra2, Ra3), respectively. For each case, Ek is computed in a single unsteady run

(Fig. 1 right) by varying Ra after time marching to a steady state such that |dEk/dt| ≤ σ×Ēk with

σ = 10−4. Larger σ or lower polynomial orders N < 7 lead to a drop in accuracy for the estimates

of Rac. Iteration tolerances were controlled by setting tolrel = 10−5. Larger values (10−3) did

not yield a clear initial linear stage with exponential growth but the Rac estimate was not affected.
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Figure 1: Rayleigh-Benard convection with walls: (top) streamlines for E=9 elements and N=7;

(left) kinetic energy for E=3 and N=7 versus Rayleigh number and (right) time.

1S. Chandrasekhar, “Hydrodynamic and Hydromagnetic Stability,” Oxford University Press (1961)
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Rayleigh-B

enard Exercise

Consider the Rayleigh-B

enard (RB) problem of Section ?? for varying Prandtl numbers, Pr := ν/α. The flow is gov-

erned by the Navier-Stokes and energy equations, ∂u
∂t+u·∇u=−∇p+ν∇2

u+βT ∂T

∂t
+u·∇T=−∇p+α∇2T,(0)

which

are coupled through the Boussinesq term βT . The domain is the rectangular box Ω = [0, Lx]× [0, 1]

with periodic boundary conditions in x and homogeneous Dirichlet conditions u = 0 at y=0 and 1.

Thermal boundary conditions are T=1 at y=0 and T=0 at y=1. Under sufficiently strong loading

conditions, β ≫ 1.

Explore Rac in the large- and small-Pr limits by varying Pr
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